X-PAD Ultimate FAQ Series

Matching record bearing along the East Section Line, at Ground

More FAQ's like this one are available here: [X-PAD FAQ Series]
Date: 2/14/2023
Filename:FAQ_XPAD_MatchingBearingAtGround_EastSectionLine_001.docx

Thesis

Step-by-step instructions for building a localization to match a specified bearing of the East section line from a previous survey, at Ground.

For this FAQ:

The record bearing distance is True North 5280 feet.
The measured bearing is N 000221 W 5,151.536 feet; using SPC NAD83 AZ Central at Grid.
To match a previous survey, we would like to build a localization that results in a N 000132 W bearing at Ground, with the SE corner matching assigned coordinates 10,000, 10,000.

Method

Make a new job in the local SPC with an appropriate GEOID:

Use a Rover to measure the found Southeast (1001) and Northeast (1002) corners of the section:

Inverse from 1001 to 1002:

Build a 'Local - Single point' system. From JOB: Coordinate System: GNSS Localization: click on 'Local- Single point', choose 1001 as the GNSS position, the North reference does not matter, enter a New point 1003 as the Local point:

Local coordinate	
Local point	1003
N	
E	10000.000 if
Z	10000.000 if

- Select an existing point - Enter the coordinates and assign a name to the point

Choose GEOID2018 for the Vertical system, finally recompute All points:

Vertical systemWGS84 ellipsoid height
Elevations on WGS84 ellipsoidElevation on local system Elevations on current local systemReference elevat...Reference elevation - < not... Details defined >Geoid GEOIDO3Geoid GEOIDO9Geoid GEOID12Geoid GEOID12BGeoid GEOID2018PRICOVIRGINGeoid GEOID2018USGeoid GEOIDALASKA12B
$\stackrel{\checkmark}{\checkmark}$

Next inverse between point 1001 and 1002:

Note that the 2D distance is $\mathbf{5 1 5 2 . 6 1 0}$ feet (this is the correct Ground distance for site using the measured elevation at point 1001.

Go to CAD and use the Draw: Layout tool to compute a new point 1004, from PN 1003, at N 000132 W 5152.610 feet:

Hint: you can enter the Bearing as 400.0132 (the $4^{\text {th }}$ quadrant NW, 0 deg 1 min 32 sec).
Click Add point, then Stop:

PN 1004 is now exactly the correct bearing and distance from 1001 and can be used as a target to rotate/scale point 1002.

Return to JOB: Coordinate System: GNSS Localization and switch the type to 'Local - Site Calibration'; click on Details, then + Add:

For the first point, choose GNSS position 1001 and Local coordinate 1003:

GNSS Position	
GNSS	1001
Point	
Latitude	N 33

Define a GNSS position in one of the following methods:

- Measure a new GNSS
position and assign a name to the point
- Select an existing point with valid GNSS coordinates - Enter the GNSS coordinates and assign a name to the point

For the second point, choose GNSS position 1002 and Local coordinate 1004:

λ_{0}^{\prime} Local system-Single point

GNSS Position	
GNSS	1002
Point	
Latitude	N $33^{\circ} 43^{\prime} 36.460465^{\prime \prime}$
Longitude	W $111^{\circ} 51^{\prime} 24.412349^{\prime \prime}$
Height	2422.990 if

Uncheck both the V boxes then click next:

入 Local system-Multi points	
H $0.000 i$ V --	1001-1003 Lat. $\mathrm{N} 33^{\circ} 42^{\prime} 45.49242 \ldots$ Lng. W $111^{\circ} 51^{\prime} 24.3703$... H 2275.943if
H 0.000i V --	```1002-1004 Lat. N 33`0}4\mp@subsup{3}{}{\prime}36.46046.. Lng. W 111'51'24.4123... H 2422.990if```
Method Barycentric Scale Conformal (scaled)	
Calculation completed. Scale factor:1.00020855	
\checkmark	$\underset{\text { Tools }}{\boldsymbol{T}} \underset{\text { Add }}{+} \quad \triangleright$

Choose GEOID 2018:

Click Accept:

Select All points, then click OK.
You now have a coordinate system that is at Ground, matching the desired bearing.

Check this by inversing from 1001 to 1002:

The bearing and distance are exactly as desired.

